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Abstract. We present the idea that the number of generations of elementary particles in a 
gauge theory characterised by a given Lie algebra is the same as the number of topologically 
distinct principal fibre bundles with a structure group having the same Lie algebra and 
R3-{0}  as base space. Two different generations thus have a different global structure or 
‘twist’ to their fibre bundles. We find that at most three generations are allowed for groups 
with the same Lie algebra as  E6, at most four generations for groups with the same Lie 
algebra as S041+z with 13 2, and at most n generations for groups with the same Lie algebra 
as SU,. 

1. Introduction 

One of the mysteries of elementary particle physics is why we have three or more 
generations of particles. Thus in the SU2 x u 1  unified gauge theory of the weak and 
electromagnetic interactions (Weinberg 1980, Salam 1980, Glashow 1980), the least 
massive leptons and quarks are put into the theory as the left-handed doublets (x) 
and (i) with this pattern repeated twice more for the p -  and T- generations. In SU, 
GUT theory, the number of leptons and quarks is directly linked together. The number 
of generations or families remains undetermined, however. Thus to have N generations, 
we need N numbers of (5* + 10) representations (Tye 1982). Going beyond usual GUT 
theories can fix N Thus recent work on a supersymmetric preon model by Greenberg 
et al (1983) gives N = 3. Another possibility is to go to a gauge group such as SO4,,+* 
or SU, sufficiently large to accommodate the family replications as well as the usual 
flavour symmetries. S04,+2 can accommodate 22n-5 families so that SOl8 can handle 
3 families; SU, can also handle 3 families (Ross 1984). One can also consider models 
with a family symmetry with the same group as the flavour symmetry with a discrete 
symmetry between the factors. SUS xSUS is one example (Ross 1984). All of these 
large group models seem rather contrived and do not really elucidate the basic 
differences between the flavour and the family symmetries, i.e. that the family structure 
just seems to be Xerox copies of the flavour structure with no gauge dynamics associated 
with the family structure at all. Treating the family structure as a gauge theory seems 
unjustified and unnecessary. 

Is there any natural way that a gauge theory can supply Xerox copies of itself? It 
has been known for some time that the appropriate mathematical description of a 
gauge theory is in terms of fibre bundles. Although locally the fibre bundle looks like 
the direct product of the base space (such as spacetime) and the structure group (gauge 
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group), globally the fibre bundle can be twisted. Thus a given gauge theory with a 
given gauge group can have associated with it more than one inequivalent fibre bundles. 
These inequivalent fibre bundles then very naturally supply Xerox copies of the gauge 
theory. Consider the e-, p - ,  and 7- families. In this view they would all be described 
by the same gauge theory with the same gauge connections and gauge fields and hence 
identical interactions, The difference between these families would lie in the different 
global twist in their associated fibre bundles. This picture seems very natural and 
simple in the sense that we do not put in anything more than the gauge theory required 
for the flavour group. The family structure comes out automatically and is not gauged 
in any way. The fact that the different families have identical interactions and yet at 
least three Xerox copies exist experimentally receives a natural explanation in this 
model. 

These inequivalent fibre bundles have already been discussed in the literature as 
non-Abelian Dirac ‘magnetic monopoles’. Magnetic monopoles in electromagnetism 
have been shown to arise as topologically distinct versions of a fibre bundle with a U, 
gauge group by Wu and Yang (1975). In fact Wu and Yang went on to discuss 
non-Abelian Dirac ‘magnetic monopoles’ which Ezawa and Tze (1976) have shown to 
be characterised by T,(G) where G is the global gauge group and T ,  the first homotopy 
group. It is clear that these non-Abelian ‘magnetic monopoles’ do not have an 
electromagnetic magnetic charge the way the usual Dirac (1931, 1948) magnetic 
monopoles or the ’t Hooft (1974) Poiyakov (1974) monopoles do. (The latter arise in 
spontaneous symmetry breaking to a residual symmetry group with a U1 factor and 
are characterised by T,(H) where H is an isotropy subgroup of G (Ezawa and Tze 
1975). In fact Mandelstam (1975) and Ezawa and Tze (1976) have identified these 
non-Abelian ‘magnetic monopoles’ and their accompanying Nielsen-Olesen (1973) 
vortices (also characterised by T,(G), Ezawa and Tze 1976) as quarks in the G = SU3/Z, 
case in order to model quark confinement. In the present paper we associate these 
non-Abelian ‘magnetic monopoles’ with particle families. In other words, we associate 
the topologically distinct fibre bundles known to be associated with a given gauge 
theory (especially GUT theories) with the particle generations. 

How far can we go with such a model of particle families? The mass splittings 
between the families are the most crucial experimental data to be determined. These 
presumably follow from the dynamics carried out in fibre bundles with inequivalent 
twists. Some work on twisted fields on non-trivial topologies has been done (Isham 
1978) but much remains to be developed. We will not address this and other equally 
pressing questions in the present paper but will take only the first small step and ask 
what this model would give for the number of allowed generations or families for 
various gauge groups. Thus we will describe the mathematics of the classification of 
fibre bundles in 0 2 below. We then apply this to the various gauge groups of interest 
to high energy physics in § 3 and draw our conclusions about the allowed number of 
generations in § 4. 

2. Classification of fibre bundles 

Fibre bundles are the natural mathematical description of any gauge theory (Daniel 
and Viallet 1980). The gauge group becomes the structure group G (and also the 
typical fibre F for the case of a principal fibre bundle) and spacetime the base space 
B of the fibre bundle E. The gauge potential (A, in the U(1) case) plays the role of 
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the connection in the fibre bundle. Locally, but not globally, the fibre bundle is simply 
the product of the principal fibre and the base space. In more detail, using the treatment 
by Choquet-Bruhat et a1 (1977), let n- be a continuous surjective mapping n-: E -f B. 
Then n-- ' (x)  is called the fibre at x, also denoted by F,, where x E B. Let B be covered 
by a family of open sets { U,: j E J c N } .  Then a fibre bundle must satisfy the following. 

(1) Locally the bundle is homeomorphic to a product bundle. Thus ..-'(U,) is 
homeomorphic to U, x F for all j E J. The homeomorphism 4,: n--'(U1) -f U, x F has 
the form 4, (P)  = ( n - ( P ) ,  dp(P)). Thus 4pIF, also denoted by 4fx is a homeomorphism 
from F, onto F. 

(2) The structure of the fibre bundle is determined by what happens in the overlap 
region. Let x E q n U,. The homeomorphism 4",0 4;;': F -f F is an element of the 
structural group G for all j ,  k E J. If G has only one element the bundle is trivial. Also 
if the cover {U,} has only one element the bundle is trivial. 

(3) The induced mapping g,k:  q n uk + G by x + g , k ( X )  = 4;,,0df;~ is continuous. 
g,k(X) is known as the transition function. The global topological structure of the fibre 
bundle is in the homeomorphisms in (2) above. Thus these mappings give the global 
difference between a cylinder and Mobius strip, both of which have the same base 
space and typical fibre. 

As an example, if one is interested in static magnetic monopoles, the base space 
can be taken to be R3-(0)  and the structure group U, (homeomorphic to SI). Wu 
and Yang (1975) have shown (or one can see from the following) that topologically 
distinct bundles correspond to how many times the equator of S2, which is the pullback 
of R3 - {0}, is wrapped around the SI structure group. This winding number gives the 
magnetic charge. Thus a particle with a magnetic charge twice the fundamental unit 
is topologically distinct from a particle with a magnetic charge of one, three, four, etc. 
times the fundamental unit. We will carry these ideas over into particle generations. 

Our basic hypothesis is that the number of topologically distinct fibre bundles, all 
describing a given gauge theory with given global gauge group G, corresponds to the 
number of particle generations in the theory. We are interested in static fibre bundle 
configurations as in the magnetic monopole case and thus consider a principal fibre 
bundle with structure group G and base space R3 - (0). We can contract the base space 
to S2 without changing the topological properties of the fibre bundle. Thus we want 
to find the number N of topologically distinct fibre bundles with gauge group G over 
base space S2. 

We have the following classification theorem from Steenrod 1951: 'The equivalence 
classes of bundles over S" with group G are in one-one correspondence with 
equivalence classes of elements of T ~ - ~ ( G )  under the operations of ro (G) .  Such a 
correspondence is provided by p - x ( a )  where a is a generator of n-,(S") and 
x: xn(S")+ x,- , (G) is a characteristic homeomorphism of p . .  .'. We are interested in 
equivalence classes of bundles over S2 from above. These are in one-one correspon- 
dence with equivalence classes of elements of .rr,(G) under the operations of ro(G).  
The homotopy group n-o and n-, measure connectedness and simply connectedness 
respectively. Thus we need n-](G) and x,(G) for various gauge groups G of interest 
to high energy physics. Since all the groups we will be concerned with are connected, 
we have n-,(G) = 0, and we need only be concerned with n-](G), which will classify 
our fibre bundles and give us the number of particle generations. 

For most purposes of model building in GUTS theories, only the Lie algebra of the 
gauge group is needed, since only the local group properties are required (Slansky 
1981). Two groups with the same Lie algebra can have very different global properties, 
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in particular their connectivity properties can be quite different. In the present case 
we need .rr,(G) so we are interested in the global properties of the group. 

Now for any given Lie algebra g, there is a unique simply connected Lie group SG 
with this Lie algebra (the universal covering group) (Gilmore 1974). Also any given 
Lie group G with Lie algebra g is isomorphic to SG/D where D is one of the discrete 
invariant subgroups of SG. We also then have (Gilmore 1974) 

.rrl (G) = D. 

Finally, all discrete invariant subgroups D of SG are subgroups of the centre Z of SG 
(Gilmore 1974). The centre of a group G is the totality of elements of G which commute 
with all the elements of G (Suzuki 1982). 

Thus to classify the number of topologically distinct fibre bundles associated with 
a given gauge theory with Lie algebra g, we need to find the universal covering group 
with this g, and its centre. We then need to find all the subgroups D of the centre. 
Finally, (1) classifies the fibre bundles for a given choice of D and hence of 'gauge 
group' or global structure group G. For any given Lie algebra, we typically will have 
a variety of possible Lie groups G all with the same local GUTS physics but with 
different connectivity properties and hence with different numbers of associated 
topologically distinct fibre bundles. This would imply, for our basic hypothesis, 
different possible numbers of allowed particle generations. We will apply this to various 
Lie algebras of interest to high energy physics in the next section. 

3. Application to various gauge groups 

The effective gauge group which describes physics depends upon the energy scale. 
The Lie algebra of U, x SU, x SU:" works very well at low energies, whereas the Lie 
algebra of something like SU5 or SO,, is very likely required at the very high energy 
scale where the three unified interactions have the same coupling constant. We expect 
that the number of particle generations depends upon the number of topologically 
distinct fibre bundles at the grand unified (GUTS) level and not on the low energy 
physics. Let us see first what happens if we look at the fibre bundles with structure 
groups associated with the low energy effective Lie algebra, since this is instructive 
for the GUTS level. We then turn to the more relevant GUTS level. 

At 'low' energy (energies where the weak and electromagnetic interactions are 
unified), we need a global group with the same Lie algebra as U,  xSU,xSU:". The 
universal covering group of U1 is R. SU2 and SU3 are their own universal covering 
groups with centres 2, (elements +1, -1) and Z3 (elements 1, exp(* i2~ /3 ) )  respec- 
tively. SU2/Z2 = SO3 so that a partial listing of groups with the same Lie algebra as 
U, XSU, XSU:" is (Michel 1964) {R or U,} X{SU2 or SO3} X{SU3 or SU3/Z3} (any of 
the eight possible combinations), U2 x{SU3 or su3/&}, and {SU2 or SO3} x U3. Now, 
since we want fermion representations, we want SU, to be present. Also, at this level 
of unification, hypercharge is not quantised so R rather than U1 is likely to be present. 
Slansky (1982) argues that the global group should have a U3 factor because of the 
connection between triality of colour and electric charge. This connection, however, 
is very likely an artefact of having a GUTS group in the background. At this level, 
colour confinement is put in by hand, and thus so is the above connection between 
triality of colour and electric charge. These considerations narrow our possibilities to 
RxSU,x{SU, or su,/Z3}. 
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To go further we need the following theorem (Hu 1959): ‘Let X and Y be two 
given spaces and xo E X, yo E Y be given points. Consider the product space 2 = X X Y 
and the point zo= (xo, yo) in Z. Then for every n > 0 ,  we have r,(Z, zo)= 
n, (X ,  x,,) x r,( Y, yo) where x denotes the direct product and = denotes an isomorph- 
ism’. Applying this to the above groups gives 

rl[RxSU2 xSUJ=O (2) 

r,[RxSU2 XSU3/Z3]= ~1[SU3/&]=23 (3)  

where we have used (1). Thus either one-particle generation is present or three 
generations are present depending on whether SU3 or su3/Z3 is taken to be the effective 
gauge group in that sector. If we want to associate the number of generations with 
the number of topologically distinct fibre bundles, then the global gauge group R X 

SU2 xSU3/Z3 is clearly what we want, since it gives three generations. (Also note that 
if either U1 or U3 were present we would get a 22 factor in rl, where ZZ is the 
additive group of integers. This just corresponds to the usual infinite number of 
topologically distinct magnetic monopoles.) 

We now run into trouble. SU3/Z3 has zero triality and does not allow representations 
which could describe coloured quarks. We must have SUP’ itself in that sector to get 
the correct physics. Thus we are forced to use R x SU2 x SU3 as the global gauge group 
and we get only one generation. Clearly if our idea of associating topologically distinct 
fibre bundles with particle generations is to work, it must be applied at the GUTS level. 
This is what we would expect. Let us now turn to these GUTS groups. 

If we insist on a GUTS theory with ( 1 )  a simple Lie group, (2) complex representa- 
tions, and (3) rank 2 4 we can only have groups with the same Lie algebra as SU, for 
n 2 5 ,  so,,+, for I2 2, and E6 (Tye 1982). We shall concentrate on SUS, SOlo, and E6 
in particular. 

The centre of SU, is the group composed of the nth roots of 1. Taking SUS as an 
example (Gilmore 1974, Wybourne 1974) the centre is 

9 (4) z = (1, e i 2 n / S ,  e i2n2/S ei2n3/S , e i 2 n 4 / 5 ) ~ s  

where I, is the identity. This is a group under multiplication and is isomorphic to Z5 
the group of integers modulo 5 .  All of the subgroups of Z are 

(1) Is 

(Z itself) = Z,. 
(5) 

If we choose the global gauge group to be SU, we get one generation; if we choose 
it to be SU,/Zs we get five allowed generations. Similarly for groups with the same 
Lie algebra as some of the other SU, groups we have 

SUS: 1, 5 allowed generations 
su6: 
SU,: 1, 7 allowed generations 
SU,: 
SU9: 

1, 2, 3, 6 allowed generations 

1, 2, 4, 8 allowed generations 
1, 3, 9, allowed generations 

depending on the choice of global gauge group. 
Looking at SUs/Z5 in more detail, can we really take this to be our global gauge 

group or do we run into the same kind of trouble as we did for Su,/&? SU,/Zs has 
zero quintality as defined by Slansky (1981). Thus we must only use zero quintality 
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irreducible representations in our model building. The two lowest dimensional irreduc- 
ible representations of SUS with zero quintality are 24 and 75, using the tables 
in Slansky (1981). The branching rules for SU, into SU2XSU3XU, are 
2 4 = ( l ,  1)(0)+(3,1)(0)+(2,3)(-5)+(2,3)(5)+(1,8)(0) and 75= ( 1 ,  l ) (O)+( l ,  3)(10) 
+ ( 2 , 3 ) ( - S ) + ( l ,  3)(-10)+(2,3)5+(2,  g)(-S)+(2,6)(5)+(1,8)(0)+(3,8)(0) for the 
two cases. The numbers in parentheses express the SU2 content, SU3 content, and 
the value of the U1 generator respectively. Both of these representations rather 
miraculously contaiO the ( 1 ,  1)(0) which the Higgs sector must contain if spontaneous 
symmetry breaking is to take place correctly. If we also use 24 or 75 for the fermions, 
we end up with too much left-right symmetry and also unobserved colour octets. It 
is not at all clear that a viable theory with the correct particle content of low energies 
can be constructed using these irreducible representations, but it may be possible. In 
any case, we certainly do not have the usual model. A better possibility may be 
something larger like SU9/Z3 giving three generations. SU,/Z3 has a remaining triality 
and it seems clear that a viable theory can be constructed. Let us turn now to the 
s 0 4 f + 2  groups. 

which is not isomorphic with a 
classical group for 13 1 (Gilmore 1974). The centre of is isomorphic to Z, 
(Wybourne 1974, Curtis 1971). The centre thus has elements (1 ,  ei2=l4, ei2n2/4, ei2r3/4)14 
and subgroups 

The universal covering group of is 

( Z ,  itself) 4 generations 

( 1 ,  ei2T2/4)14 2 generations 

(1)14 1 generation. 

(7)  

Thus any group with the same Lie algebra as S041+2 for 1 3 2  has 

S041+2: 1 ,  2, 4 allowed generations (8) 

for all 13 2, depending on whether the choice of global gauge group is S ~ i n , ~ + ~ ,  
or Spin,,,,/Z, respectively. ~ , ( S p i n , ~ + ~ / Z , )  = Z, allowing 4 generations, for example. 

If we look at the global group Spin,,+,/Z, in more detail for 1 = 2 using the tables 
in Slansky (1981), we find that we want irreducible representations of congruency class 
(00) which also contain l(0) for branching to SUS XU, so that the Higgs sector will 
work. Irreducible representations of dimension 45 and 210 have these properties. 45, 
for example, has 45 = 1(0)+ 10(4)+%(-4)+24(0) for branching into SUS X U , .  Of 
course, the breaking may go to SU2xSU2xSU4 in which case 54= 
( 1 , 1 , 1 )  + (3 ,3 ,1)  + ( 1 ,  1,20’) + (2 ,2 ,6)  or 210 are required. These also are of con- 
gruency class (00) so that they are irreducible representations of Spin,,/Z, as we 
require. Again it is not clear whether a completely viable theory can be built out of 
these representations. 

The simply connected covering group corresponding to the Lie algebra of E6 has 
centre Z3 (Curtis 1971). This has subgroups Z3 and Z3 itself. Thus any global group 
with the same Lie algebra as E6 has 

E6: 1, 3 allowed generations, (9) 

depending on the choice of global group. 
We are interested in irreducible representations of E6/Z3 if we are to get three 

particle generations. These have zero triality. The lowest dimensional representation 
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with zero triality is 78. The branching of this into SO,,, x U, is (Slansky 1981) 78 = 
l(0) +45(0) + 16(-3) +%(3) which rather miraculously again contains the l (0)  required 
for the Higgs and spontaneous symmetry breaking. This representation is so large that 
a viable theory can very likely be built in terms of it. 

4. Discussion and conclusion 

The basic idea that the number of generations of elementary particles in a gauge theory 
characterised by a given Lie algebra is the same as the number of topologically distinct 
principal fibre bundles with a structure group having the same Lie algebra and R3 - (0)’ 
as base space is very attractive philosophically. It requires nothing more than the 
usual model with an additional specification of the global gauge group which goes 
along with the usual Lie algebra. The topology provides a distinction between two 
different generations as having a different global structure or ‘twist’ to their fibre 
bundles. This provides a kind of generation quantum number but one that obviously 
can be broken since we have reactions like A +  P++ n- where an s quark belonging 
to one generation becomes a d quark belonging to another. 

Equations (6), (8) ,  and (9) give the number of allowed generations for various GUT 
theories. We have at most 3 generations in groups with the same Lie algebra as E6, 
at most 4 generations in groups with the same Lie algebra as SO,,,, with 1 z 2, and at 
most n generations in groups with the same Lie algebra as SU,. 
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